69 research outputs found

    FCG-ASpredictor: An Approach for the Prediction of Average Speed of Road Segments with Floating Car GPS Data

    Get PDF
    The average speed (AS) of a road segment is an important factor for predicting traffic congestion, because the accuracy of AS can directly affect the implementation of traffic management. The traffic environment, spatiotemporal information, and the dynamic interaction between these two factors impact the predictive accuracy of AS in the existing literature, and floating car data comprehensively reflect the operation of urban road vehicles. In this paper, we proposed a novel road segment AS predictive model, which is based on floating car data. First, the impact of historical AS, weather, and date attributes on AS prediction has been analyzed. Then, through spatiotemporal correlations calculation based on the data from Global Positioning System (GPS), the predictive method utilizes the recursive least squares method to fuse the historical AS with other factors (such as weather, date attributes, etc.) and adopts an extended Kalman filter algorithm to accurately predict the AS of the target segment. Finally, we applied our approach on the traffic congestion prediction on four road segments in Chengdu, China. The results showed that the proposed predictive model is highly feasible and accurate. Document type: Articl

    FedVCP: A Federated-Learning-Based Cooperative Positioning Scheme for Social Internet of Vehicles

    Get PDF
    Intelligent vehicle applications, such as autonomous driving and collision avoidance, put forward a higher demand for precise positioning of vehicles. The current widely used global navigation satellite systems (GNSS) cannot meet the precision requirements of the submeter level. Due to the development of sensing techniques and vehicle-to-infrastructure (V2I) communications, some vehicles can interact with surrounding landmarks to achieve precise positioning. Existing work aims to realize the positioning correction of common vehicles by sharing the positioning data of sensor-rich vehicles. However, the privacy of trajectory data makes it difficult to collect and train data centrally. Moreover, uploading vehicle location data wastes network resources. To fill these gaps, this article proposes a vehicle cooperative positioning (CP) system based on federated learning (FedVCP), which makes full use of the potential of social Internet of Things (IoT) and collaborative edge computing (CEC) to provide high-precision positioning correction while ensuring user privacy. To the best of our knowledge, this article is the first attempt to solve the privacy of CP from a perspective of federated learning. In addition, we take the advantages of local cooperation through vehicle-to-vehicle (V2V) communications in data augmentation. For individual differences in vehicle positioning, we utilize transfer learning to eliminate the impact of such differences. Extensive experiments on real data demonstrate that our proposed model is superior to the baseline method in terms of effectiveness and convergence speed

    Glutamic Acid Decarboxylase-Derived Epitopes with Specific Domains Expand CD4+CD25+ Regulatory T Cells

    Get PDF
    BACKGROUND:CD4(+)CD25(+) regulatory T cell (Treg)-based immunotherapy is considered a promising regimen for controlling the progression of autoimmune diabetes. In this study, we tested the hypothesis that the therapeutic effects of Tregs in response to the antigenic epitope stimulation depend on the structural properties of the epitopes used. METHODOLOGY/PRINCIPAL FINDINGS:Splenic lymphocytes from nonobese diabetic (NOD) mice were stimulated with different glutamic acid decarboxylase (GAD)-derived epitopes for 7-10 days and the frequency and function of Tregs was analyzed. We found that, although all expanded Tregs showed suppressive functions in vitro, only p524 (GAD524-538)-expanded CD4(+)CD25(+) T cells inhibited diabetes development in the co-transfer models, while p509 (GAD509-528)- or p530 (GAD530-543)-expanded CD4(+)CD25(+) T cells had no such effects. Using computer-guided molecular modeling and docking methods, the differences in structural characteristics of these epitopes and the interaction mode (including binding energy and identified domains in the epitopes) between the above-mentioned epitopes and MHC class II I-A(g7) were analyzed. The theoretical results showed that the epitope p524, which induced protective Tregs, possessed negative surface-electrostatic potential and bound two chains of MHC class II I-A(g7), while the epitopes p509 and p530 which had no such ability exhibited positive surface-electrostatic potential and bound one chain of I-A(g7). Furthermore, p524 bound to I-A(g7) more stably than p509 and p530. Of importance, we hypothesized and subsequently confirmed experimentally that the epitope (GAD570-585, p570), which displayed similar characteristics to p524, was a protective epitope by showing that p570-expanded CD4(+)CD25(+) T cells suppressed the onset of diabetes in NOD mice. CONCLUSIONS/SIGNIFICANCE:These data suggest that molecular modeling-based structural analysis of epitopes may be an instrumental tool for prediction of protective epitopes to expand functional Tregs

    Traffic Speed Prediction: An Attention-Based Method

    No full text
    Short-term traffic speed prediction has become one of the most important parts of intelligent transportation systems (ITSs). In recent years, deep learning methods have demonstrated their superiority both in accuracy and efficiency. However, most of them only consider the temporal information, overlooking the spatial or some environmental factors, especially the different correlations between the target road and the surrounding roads. This paper proposes a traffic speed prediction approach based on temporal clustering and hierarchical attention (TCHA) to address the above issues. We apply temporal clustering to the target road to distinguish the traffic environment. Traffic data in each cluster have a similar distribution, which can help improve the prediction accuracy. A hierarchical attention-based mechanism is then used to extract the features at each time step. The encoder measures the importance of spatial features, and the decoder measures the temporal ones. The proposed method is evaluated over the data of a certain area in Hangzhou, and experiments have shown that this method can outperform the state of the art for traffic speed prediction

    Research on Phase Combination and Signal Timing Based on Improved K-Medoids Algorithm for Intersection Signal Control

    No full text
    Aiming at the problem of intersection signal control, a method of traffic phase combination and signal timing optimization based on the improved K-medoids algorithm is proposed. Firstly, the improvement of the traditional K-medoids algorithm embodies in two aspects, namely, the selection of the initial medoids and the parameter k, which will be applied to the cluster analysis of historical saturation data. The algorithm determines the initial medoids based on a set of probabilities calculated from the distance and determines the number of clusters k based on an exponential function, weight adjustment, and elbow ideas. Secondly, a phase combination model is established based on the saturation and green split data, and the signal timing is optimized through a bilevel programming model. Finally, the algorithm is evaluated over a certain intersection in Hangzhou, and results show that this algorithm can reduce the average vehicle delay and queue length and improve the traffic capacity of the intersection in the peak hour

    FedVCP: A Federated-Learning-Based Cooperative Positioning Scheme for Social Internet of Vehicles

    Get PDF
    Intelligent vehicle applications, such as autonomous driving and collision avoidance, put forward a higher demand for precise positioning of vehicles. The current widely used global navigation satellite systems (GNSS) cannot meet the precision requirements of the submeter level. Due to the development of sensing techniques and vehicle-to-infrastructure (V2I) communications, some vehicles can interact with surrounding landmarks to achieve precise positioning. Existing work aims to realize the positioning correction of common vehicles by sharing the positioning data of sensor-rich vehicles. However, the privacy of trajectory data makes it difficult to collect and train data centrally. Moreover, uploading vehicle location data wastes network resources. To fill these gaps, this article proposes a vehicle cooperative positioning (CP) system based on federated learning (FedVCP), which makes full use of the potential of social Internet of Things (IoT) and collaborative edge computing (CEC) to provide high-precision positioning correction while ensuring user privacy. To the best of our knowledge, this article is the first attempt to solve the privacy of CP from a perspective of federated learning. In addition, we take the advantages of local cooperation through vehicle-to-vehicle (V2V) communications in data augmentation. For individual differences in vehicle positioning, we utilize transfer learning to eliminate the impact of such differences. Extensive experiments on real data demonstrate that our proposed model is superior to the baseline method in terms of effectiveness and convergence speed

    Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning

    No full text

    Multi-Vehicle Trajectory Tracking towards Digital Twin Intersections for Internet of Vehicles

    No full text
    Digital Twin (DT) provides a novel idea for Intelligent Transportation Systems (ITS), while Internet of Vehicles (IoV) provides numerous positioning data of vehicles. However, complex interactions between vehicles as well as offset and loss of measurements can lead to tracking errors of DT trajectories. In this paper, we propose a multi-vehicle trajectory tracking framework towards DT intersections (MVT2DTI). Firstly, the positioning data is unified to the same coordinate system and associated with the tracked trajectories via matching. Secondly, a spatialā€“temporal tracker (STT) utilizes long short-term memory network (LSTM) and graph attention network (GAT) to extract spatialā€“temporal features for state prediction. Then, the distance matrix is computed as a proposed tracking loss that feeds tracking errors back to the tracker. Through the iteration of association and prediction, the unlabeled coordinates are connected into the DT trajectories. Finally, four datasets are generated to validate the effectiveness and efficiency of the framework
    • ā€¦
    corecore